Latent variable models for the analysis of heterogeneous information

Marco Lorenzi

Epione Research Group, Université Côte d'Azur, Inria

Data Science meets biomedical research

Inría

Variability of multivariate biomedical data - within/between views -

Inría

Calhoun and Adali, IEEE Trans Inf Technol Biomed. 2009; Meda et al, NeuroImage 2010; Vonou et al, NeuroImage 2010; Groves et al, ₋₃ NeuroImage 2011; Sui et al; NeuroImage, 2013; Miller et al, Nat Neurosci, 2016; Li Shen and Paul Thompson, Proc of the IEEE, 2019; ...

Variability of multivariate biomedical data - between datasets -

Population Acquisition Processing Data security

...

Calhoun and Adali, IEEE Trans Inf Technol Biomed. 2009; Meda et al, NeuroImage 2010; Vonou et al, NeuroImage 2010; Groves et al, ₋₄ NeuroImage 2011; Sui et al; NeuroImage, 2013; Miller et al, Nat Neurosci, 2016; Li Shen and Paul Thompson, Proc of the IEEE, 2019; ...

Latent variable models

- 1. Multi-variate modeling
- 2. Novel scalable approaches to *multi-view* data

Latent variable models

1. Multi-variate modeling

2. Novel scalable approaches to multi-view data

Inría

С

...

С

...

Iterate for > 1'000'000 variants

Inría

Iterate for > 1'000'000 variants

Iterate for > 1'000'000 image locations

...

Iterate for > 1'000'000 variants

Iterate for > 1'000'000 image locations

- Hard interpretability
- False positive discoveries
- No interaction across brain and genetic areas

...

A unified statistical formulation via latent generative models

The building-block: linear model

$$\nabla_{\mathbf{w}}(\|Y - X\mathbf{w}\|^2) = 0 \qquad \qquad \mathbf{w} = (X^T X)^{-1} X^T Y$$

Classical formulation of latent variable models

Principal component analysis

Classical formulation of latent variable models

Principal component analysis

A **variance** maximisation problem:

$$\mathbf{w} = \operatorname{argmax}_{\|\mathbf{w}\|=1} (X\mathbf{w})^T (X\mathbf{w})$$
$$= \operatorname{argmax}_{\|\mathbf{w}\|=1} \mathbf{w}^T X^T X \mathbf{w}$$
$$= \operatorname{argmax}_{\|\mathbf{w}\|=1} \mathbf{w}^T S_{XX} \mathbf{w}$$

$$\mathcal{L}(\mathbf{w}, \lambda) = \mathbf{w} S_{XX} \mathbf{w} - \lambda [\mathbf{w}_X^T \mathbf{w}_X - 1]$$
$$S_{XX} \mathbf{w} = \lambda \mathbf{w}$$

Non-linear iterative partial least squares - NIPALS Wold 1975

Random initialization \mathbf{w} 2. Solve : $\operatorname{argmin}_{\mathbf{t}}||X - \mathbf{t}\mathbf{w}^{T}||^{2}$ $\mathbf{t} = X\mathbf{w}(\mathbf{w}^T\mathbf{w})^{-1}$ 3. Normalize : $\mathbf{t} = rac{\mathbf{t}}{||\mathbf{t}||}$ 4. Update : $\operatorname{argmin}_{\mathbf{w}} ||X - \mathbf{t}\mathbf{w}^T||^2$ $\mathbf{w} = X^T \mathbf{t} (\mathbf{t}^T \mathbf{t})^{-1}$ 5. Iterate 2-4 until convergence

Why it works:

$$4 \to const \,\mathbf{w} = X^T \mathbf{t}$$
$$2 \to const \,\mathbf{t} = X \mathbf{w}$$

Then

$$const \mathbf{w} = S_{XX} \mathbf{w}$$

eigen-solution of the covariance matrix

Geladi and Kowalski, Analytica Chimica Acta, 1985

Geladi and Kowalski, Analytica Chimica Acta, 1985

Partial Least Squares

A **covariance** maximisation problem:

$$\operatorname{argmax}_{\mathbf{w}_X,\mathbf{w}_Y} Cov(X\mathbf{w}_X,Y\mathbf{w}_Y)$$

$$Cov(X\mathbf{w}_X, Y\mathbf{w}_Y) = \frac{\mathbf{w}_X^T S_{XY} \mathbf{w}_Y}{\sqrt{\mathbf{w}_X^T \mathbf{w}_X} \sqrt{\mathbf{w}_Y^T \mathbf{w}_Y}}$$

Partial Least Squares

$$\mathcal{L}(\mathbf{w}_X, \mathbf{w}_Y, \lambda_X, \lambda_Y) = \mathbf{w}_X^T S_{XY} \mathbf{w}_Y - \lambda_X [\mathbf{w}_X^T \mathbf{w}_X - 1] - \lambda_Y [\mathbf{w}_Y^T \mathbf{w}_Y - 1]$$

$$\begin{cases} S_{XY}\mathbf{w}_Y = \lambda_X \mathbf{w}_X \\ S_{YX}\mathbf{w}_X = \lambda_Y \mathbf{w}_Y \end{cases}$$

$$\lambda_X \mathbf{w}_X^T \mathbf{w}_X = \mathbf{w}_X^T S_{XY} \mathbf{w}_Y$$
$$= \mathbf{w}_Y^T S_{YX} \mathbf{w}_X$$
$$= \lambda_Y \mathbf{w}_Y^T \mathbf{w}_Y$$

$$\lambda_X = \lambda_Y = \lambda$$

$$\begin{bmatrix} 0 & S_{XY} \\ S_{YX} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w}_X \\ \mathbf{w}_Y \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{w}_X \\ \mathbf{w}_Y \end{bmatrix}$$

The PLS problem is solved via singular value decomposition (SVD) of the covariance matrix

Non-linear iterative partial least squares - NIPALS

scikit-learn/sklearn/cross_decomposition

Geladi and Kowalski, Analytica Chimica Acta, 1985

A correlation maximisation problem:

$$\underset{\boldsymbol{\rho}(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b} / (\sqrt{\mathbf{a}^T \mathbf{a}} \sqrt{\mathbf{b}^T \mathbf{b}})}{\operatorname{argmax} \boldsymbol{\rho}(\mathbf{X} \mathbf{w}_X, Y \mathbf{w}_Y)}$$

$$\rho(X\mathbf{w}_X, Y\mathbf{w}_Y) = \frac{\mathbf{w}_X^T S_{XY} \mathbf{w}_Y}{\sqrt{\mathbf{w}_X^T S_{XX} \mathbf{w}_X} \sqrt{\mathbf{w}_Y^T S_{YY} \mathbf{w}_Y}}$$

A correlation maximisation problem:

 $\mathcal{L}(\mathbf{w}_X, \mathbf{w}_Y, \lambda_X, \lambda_Y) = \mathbf{w}_X^T S_{XY} \mathbf{w}_Y - \lambda_X [\mathbf{w}_X^T S_{XX} \mathbf{w}_X - 1] - \lambda_Y [\mathbf{w}_Y^T S_{YY} \mathbf{w}_Y - 1]$

$$\mathcal{L}(\mathbf{w}_X, \mathbf{w}_Y, \lambda_X, \lambda_Y) = \mathbf{w}_X^T S_{XY} \mathbf{w}_Y - \lambda_X [\mathbf{w}_X^T S_{XX} \mathbf{w}_X - 1] - \lambda_Y [\mathbf{w}_Y^T S_{YY} \mathbf{w}_Y - 1]$$

$$\begin{cases} S_{XY}\mathbf{w}_Y = \lambda_X S_{XX}\mathbf{w}_X\\ S_{YX}\mathbf{w}_X = \lambda_Y S_{YY}\mathbf{w}_Y \end{cases}$$

$$\mathcal{L}(\mathbf{w}_X, \mathbf{w}_Y, \lambda_X, \lambda_Y) = \mathbf{w}_X^T S_{XY} \mathbf{w}_Y - \lambda_X [\mathbf{w}_X^T S_{XX} \mathbf{w}_X - 1] - \lambda_Y [\mathbf{w}_Y^T S_{YY} \mathbf{w}_Y - 1]$$

$$\begin{cases} S_{XY}\mathbf{w}_Y = \lambda_X S_{XX}\mathbf{w}_X\\ S_{YX}\mathbf{w}_X = \lambda_Y S_{YY}\mathbf{w}_Y \end{cases}$$

$$\begin{bmatrix} 0 & S_{XY} \\ S_{YX} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w}_X \\ \mathbf{w}_Y \end{bmatrix} = \lambda \begin{bmatrix} S_{XX} & 0 \\ 0 & S_{YY} \end{bmatrix} \begin{bmatrix} \mathbf{w}_X \\ \mathbf{w}_Y \end{bmatrix}$$

CCA is solved as a generalized eigenvalue problem

Inría

Non-linear iterative partial least squares - NIPALS

scikit-learn/sklearn/cross_decomposition

Geladi and Kowalski, Analytica Chimica Acta, 1985

Non-linear iterative partial least squares - NIPALS Deflation

$$\begin{split} \mathbf{X}^{(i+1)} &= \mathbf{X}^{(i)} - \boldsymbol{t}^{(i)} \frac{\boldsymbol{t}^{(i)T} \mathbf{X}^{(i)}}{\boldsymbol{t}^{(i)T} \boldsymbol{t}^{(i)}}, \\ \mathbf{Y}^{(i+1)} &= \mathbf{Y}^{(i)} - \boldsymbol{u}^{(i)} \frac{\boldsymbol{u}^{(i)T} \mathbf{Y}^{(i)}}{\boldsymbol{u}^{(i)T} \boldsymbol{u}^{(i)}} \end{split}$$

Iterate until

- residual component negligible epsilon
- Difference between consecutive residual components negligible

Reduced Rank Regression

 $f(\mathbf{A}, \mathbf{B}) = tr\{(\mathbf{Y} - \mathbf{X}\mathbf{A}\mathbf{B})\Gamma(\mathbf{Y} - \mathbf{X}\mathbf{A}\mathbf{B})^T\}$

Reduced Rank Regression

Solution associated to the eigen-decomposition of the matrix

$$\mathbf{R} = \Gamma^{1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \underbrace{\Gamma^{1/2}}_{\text{prior knowledge}} \overset{\text{Matrix encoding}}{\underset{\text{on Y}}{\text{prior knowledge}}}$$

Reduced Rank Regression

Solution associated to the eigen-decomposition of the matrix

$$\mathbf{R} = \Gamma^{1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \underbrace{\Gamma^{1/2}}_{\text{prior knowledge}} \overset{\text{Matrix encoding}}{\underset{\text{on Y}}{\text{prior knowledge}}}$$

RRR solutions:
$$\mathbf{A} = \Gamma^{-1/2} \mathbf{U}, \qquad \mathbf{B} = \mathbf{U}^T \Gamma^{1/2} \mathbf{S}_{\mathbf{YX}} \mathbf{S}_{\mathbf{XX}}^{-1}$$

Special case:

$$\Gamma = \mathbf{S}_{\mathbf{Y}\mathbf{Y}}$$
 \longrightarrow CCA

Sparsity in latent variable models

$$\operatorname*{argmin}_{\mathbf{w}} f(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

 $\underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$

Algorithm Regularization of projections parameters \mathbf{w}_x and \mathbf{w}_y in NIPALS.

Given current estimates of \mathbf{w}_x and \mathbf{w}_y . While not converged do:

- 1. compute $\mathbf{t} = \mathbf{X}\mathbf{w}_x$,
- 2. compute $\mathbf{u} = \mathbf{Y}\mathbf{w}_y$,
- 3. compute $\overline{\mathbf{w}_x}$ by solving the Elastic-Net regression: $\overline{\mathbf{w}_x} = \arg\min(\mathbf{t} - \mathbf{X}\mathbf{v})^2 + \lambda_{x2} \|\mathbf{v}\|_2^2 + \lambda_{x1} \|\mathbf{v}\|_1,$
- 4. compute $\overline{\mathbf{w}_y}$ by solving the Elastic-Net regression:

$$\overline{\mathbf{w}_y} = \arg\min_{\mathbf{v}} \left(\mathbf{u} - \mathbf{Y}\mathbf{v} \right)^2 + \lambda_{y2} \|\mathbf{v}\|_2^2 + \lambda_{y1} \|\mathbf{v}\|_1,$$

3. Normalize
$$\overline{\mathbf{w}_x}$$
 and $\overline{\mathbf{w}_x}$,

4. Set
$$\mathbf{w}_x = \overline{\mathbf{w}_x}, \ \mathbf{w}_y = \overline{\mathbf{w}_y}.$$

PLS in practice

Application to imaging-genetics analysis in Alzheimer's disease

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Partial least squares (PLS) $\max_{p,q} Cov(X \cdot p, Y \cdot q)$

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Pros. Overcomes issues of mass univariate analysis

- Avoiding independent multiple testing
- Exploring SNP-SNP interaction (epistatic effects)

Study cohort

	Healthy	AD
Ν	401	238
Age (years)	74.45	74.72
Sex (% females)	49	45
MMSE	29.1	23.2
Apoe4 (% 0/1/2)	72/26/2	31/48/21

X = Phenotype features

- Freesurfer brain cortical thickness maps (327,684 mesh points)
- Radial distance of hippocampi and amygdalae (27,120 mesh points) [Gutman et al, NeuroImage 2013]

Y = Genotype features

• Individuals' minor allele counts for 1,167,126 SNPs in chromosomes 1 to 22

Standard quality control: MAF < 0.01, Genotype Call Rate <95%, Hardy-Weinberg Equilibrium < 1x10^{-6.} Imputation to HapMap III reference panel, quality controlled (MAF > 0.01 and R-squared > 0.3)

Application to multivariate Imaging-genetics

Investigating biological mechanisms through Meta-analysis

PLS statistical result

Investigating biological mechanisms through Meta-analysis

PLS statistical result

Querying gene annotation databases

McLaren et al. The Ensembl Variant Effect Predictor. Genome Biology, 2016

Investigating biological mechanisms through Meta-analysis

148 SNP-gene combinations

6 tested tissues

hippocampus, whole blood, Adipose subcutaneous, artery tibia, nerve tibial, treated fibroblast

14 Significantly expressed genes

TM2D1 (amyloid-beta binding protein),IL10RA (increase in hippo in mouse model),TRIB3

(neuronal cell death, modulates PSEN1 stability, interacts with APP)

	Significance (p-value)	
	training	testing
TM2D1	0.005	0.053
IL10RA	0.107	0.620
TRIB3	0.003	0.003
ZBTB7A	0.036	0.913
LYSMD4	0.000	0.206
CRYL1	0.621	0.118
FAM135B	0.000	0.559
IP6K3	0.000	0.465
ITGA1	0.099	0.731
KIN	0.001	0.206
LAMC1	0.002	0.062
LINC00941	0.000	0.690
RBPMS2	0.000	0.215
RP11-181K3.4	0.002	0.053

Significance (n. value)

Latent variable models

1. Multi-variate modeling

2. Novel scalable approaches to *multi-view* data

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

$$\mathbf{z} \longrightarrow \mathbf{X}$$
Posterior $p(\mathbf{z}|\mathbf{x}) \quad p(\mathbf{x}|\mathbf{z})$ Likelihood
$$p(\mathbf{z}|\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
Difficult to compute
$$p(\mathbf{z}|\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
Idea: find a "close enough" and simple approximation $q(\mathbf{z}|\mathbf{x})$

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

$D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})] = \mathbf{E}_{\mathbf{z}\sim q} \log[q(\mathbf{z}|x)] - \mathbf{E}_{\mathbf{z}\sim q} \log[p(\mathbf{z}|x)]$

C. M. Bishop, Pattern Recognition and Machine Learning, Ch.10, Ed. 2006

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

 $D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})] = \mathbf{E}_{\mathbf{z}\sim q} \log[q(\mathbf{z}|x)] - \mathbf{E}_{\mathbf{z}\sim q} \log[p(\mathbf{z}|x)]$

Evidence lower bound (ELBO)

$$\mathcal{L} = \mathbf{E}_{\mathbf{z} \sim q} \log[p(\mathbf{x}|\mathbf{z})] - D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

reconstruction

regularization

C. M. Bishop, Pattern Recognition and Machine Learning, Ch.10, Ed. 2006

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

minimize

$$\frac{1}{C} \mathcal{D}_{\mathrm{KL}}\left(q\left(\mathbf{z}|\mathbf{x}_{c}\right) || p\left(\mathbf{z}|\mathbf{x}_{1}, \ldots, \mathbf{x}_{C}\right)\right)$$

minimize

$$\frac{1}{C} \mathcal{D}_{\mathrm{KL}} \left(q \left(\mathbf{z} | \mathbf{x}_c \right) || p \left(\mathbf{z} | \mathbf{x}_1, \dots, \mathbf{x}_C \right) \right)$$

minimize

Inría

$$\frac{1}{C} \mathcal{D}_{\mathrm{KL}} \left(q \left(\mathbf{z} | \mathbf{x}_c \right) || p \left(\mathbf{z} | \mathbf{x}_1, \dots, \mathbf{x}_C \right) \right)$$

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

minimize

$$\frac{1}{C} \mathcal{D}_{\mathrm{KL}} \left(q \left(\mathbf{z} | \mathbf{x}_c \right) || p \left(\mathbf{z} | \mathbf{x}_1, \dots, \mathbf{x}_C \right) \right)$$

Evidence Lower bound (ELBO)

$$\frac{1}{C}\sum_{c=1}^{C}\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{c})}\left[\sum_{i=1}^{C}\ln p\left(\mathbf{x}_{i}|\mathbf{z}\right)\right] - \mathcal{D}_{\mathrm{KL}}\left(q\left(\mathbf{z}|\mathbf{x}_{c}\right)|| p\left(\mathbf{z}\right)\right)$$

Encoding for given channel Reconstruction of all channels

minimize

$$\frac{1}{C} \mathcal{D}_{\mathrm{KL}} \left(q \left(\mathbf{z} | \mathbf{x}_c \right) || p \left(\mathbf{z} | \mathbf{x}_1, \dots, \mathbf{x}_C \right) \right)$$

Evidence Lower bound (ELBO)

Encoding for given channel Reconstruction of all channels Regularization: sparsity inducing prior

[Kingma et al, NIPS, 2015; Molchanov et al, ICML 2017]

Classic Implementation (non sparse)

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{c})} \left[\sum_{i=1}^{C} \ln p(\mathbf{x}_{i}|\mathbf{z}) \right] - \mathcal{D}_{\mathrm{KL}} \left(q(\mathbf{z}|\mathbf{x}_{c}) || p(\mathbf{z}) \right)$$

Reconstructions:
$$p(\mathbf{x}_i | \mathbf{z}) = \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{\mathbf{z}}; \boldsymbol{\Sigma}_{\mathbf{z}})$$

Encodings: $q(\mathbf{z} | \mathbf{x}_c) = \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}_{\mathbf{x}_c}; \boldsymbol{\Sigma}_{\mathbf{x}_c})$
Prior: $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}; \mathbf{I})$

Sparse Implementation

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{c})} \left[\sum_{i=1}^{C} \ln p(\mathbf{x}_{i}|\mathbf{z}) \right] - \mathcal{D}_{\mathrm{KL}} \left(q(\mathbf{z}|\mathbf{x}_{c}) || p(\mathbf{z}) \right)$$

Reconstructions:
$$p\left(\mathbf{x}_{i}|\mathbf{z}
ight) = ext{same}$$

Encodings: $q\left(\mathbf{z}|\mathbf{x}_{c}
ight) = \mathcal{N}\left(\mathbf{z}|\boldsymbol{\mu}_{\mathbf{x}_{c}}; \alpha \odot \boldsymbol{\mu}_{\mathbf{x}_{c}}^{2}
ight)$
Prior: $p\left(\mathbf{z}
ight) \propto 1/|\mathbf{z}|$

Sparse Implementation: why it works?

Evidence Lower bound (ELBO)
$$\frac{1}{C} \sum_{c=1}^{C} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{c})} \left[\sum_{i=1}^{C} \ln p(\mathbf{x}_{i}|\mathbf{z}) \right] - \mathcal{D}_{\mathrm{KL}} \left(q(\mathbf{z}|\mathbf{x}_{c}) || p(\mathbf{z}) \right)$$

Encodings: $q(\mathbf{z}|\mathbf{x}_{c}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\mathbf{x}_{c}}; \alpha \odot \boldsymbol{\mu}_{\mathbf{x}_{c}}^{2})$ Prior: $p(\mathbf{z}) \propto 1/|\mathbf{z}|$

> Prior and encodings act together such that (element-wise):

$$\lim_{\mu_i \to 0} \mathcal{N}\left(z_i | \mu_i; \alpha_i \cdot \mu_i^2\right) = \delta(0)$$

Relationship between α and the probability of pruning the *i*-th dimension:

$$\alpha_i = \frac{p_i}{1 - p_i}$$

Inría

Prediction from latent space

Generation from latent space

Large-scale applications

From fundus to cardiac images

Courtesy of Diaz-Pinto et al. work in progress at CISTIB, University of Leeds, UK

Thank you

