A guided tour to multivariate models in imaging-genetics

Marco Lorenzi

Asclepios Research Group, Université Côte d'Azur, Inria

Late Onset Alzheimer's Disease

Jack et al, Lancet Neurol 2010; Frisoni et al, Nature Rev Neurol 2010

time

New opportunities (and challenges)

Data science & statistical learning

Alzheimer's research & Brain imaging

Towards novel disease models and improved diagnostic

Imaging Genetics

Genotype - phenotype

DNA is the blueprint of individuals

SNPs and individual variability

Many inter-subject differences are due to single variations in DNA

A single difference at a specific nucleotide position

SNPs and individual variability

> ~10⁷ estimated SNPs in human genome

A statistical characterization of SNPs

>1% population without same nucleotide

Haplotype

Individual's combination of SNPs

profiles

What is in there?

~500k SNPs

1st and 2nd PCA components

- Avg prediction error: 310 km
- 90% within 700 km

Novembre et al, Genes mirror geography within Europe, Nature 456, 2008

What about disease susceptibility?

Pharmacological intervention

SNP profile	Drug Response
А	Poor
В	Good
С	None
D	Good

Accu-ApoE Alzheimer Test 5 minute easy to use saliva sample collection kit

USES A SAMPLE OF YOUR SALIVA SENT TO OUR LAB FOR A DNA GENETIC ANALYSIS

This sample collection kit will allow us to test for your ApoE gene variants as to the degree of possibility of Alzheimer's Disease.

Your test results will be explained in detail.

Disease understanding

Minor Allele	ε2	ε3	ε4
General Frequency	8.4%	77.9%	13.7%
AD Frequency	3.9%	59.4%	36.7%

main

Genetic basis of (sporadic) Alzheimer

Inría

Is it all about APOE?

Majority of current studies based on MASS UNIVARIATE ANALYSIS (GWAS)

Very large samples required (~10-100K) Low explained variability

(nría_

GWAS in Alzheimer's disease

Genetic heritability in twins up to 80%

Gatz et al, Arch Gen Psychiatry 2006

A handful of established genes APOE, CLU, PICALM, CR1, ... overall leading to small risk factor

Table 1 Genetic loci identified by the largest GWAS in AD

Locus	SNP	OR
APOE	rs2075650	2.53 (2.41-2.66)*
CLU	rs11136000	0.87 (0.84-0.89)*
PICALM	rs3851179	0.87 (0.84-0.90)*
	rs541458	0.87 (0.83-0.90)*
CR1	rs3818361	1.18 (1.13-1.23)*
	rs6656 <mark>4</mark> 01	3.5 × 10 ⁻⁹ †
BIN1	rs744373	1.15 (1.11-1.20)*
	Guerreiro e	et ai,

Biochemincal Society Trans. 2011

AD missing heritability remains extensive

Imaging-genetics: multimodal analysis of heterogeneous data

- Multivariate Modeling in Imaging Genetics
- Online learning for multicentric studies
- Genetic analysis through disease progression modeling

Imaging-genetics: multimodal analysis of heterogeneous data

- Multivariate Modeling in Imaging Genetics
- Online learning for multicentric studies
- Genetic analysis through disease progression modeling

Imaging-genetics

Identifying genetic modulators of the brain phenotype

Brain imaging

Genetics

Genetic variants (Single Nucleotide Polymorphism - SNP -)

...

TA

С

...

Iterate for > 1'000'000 variants

(nría_

Iterate for > 1'000'000 variants

Iterate for > 1'000'000 image locations

...

Iterate for > 1'000'000 variants

Iterate for > 1'000'000 image locations

- Hard interpretability
- False positive discoveries
- No interaction across brain and genetic areas

...

A recent review paper (Shen and Thompson 2019)

Li Shen and Paul Thompson, Brain Imaging Genomics: Integrated Analysis and Machine Learning, Proceedings of the IEEE, 2019.

A recent review paper (Shen and Thompson 2019)

Li Shen and Paul Thompson, Brain Imaging Genomics: Integrated Analysis and Machine Learning, Proceedings of the IEEE, 2019.

Association between SNP and brain features

statistical complexity

Multivariate modeling and dimensionality reduction

Latent variable models

The building-block: linear model

 $Y = Xw + \epsilon$

$$||Y - X\mathbf{w}||^2 = (Y - X\mathbf{w})^T (Y - X\mathbf{w}) \qquad \frac{d||Y - X\mathbf{w}||^2}{d\mathbf{w}} = -2Y^T X + \mathbf{w}^T X^T X$$
$$= Y^T Y - 2Y^T X\mathbf{w} + \mathbf{w}^T X^T X \mathbf{w} \qquad \mathbf{w} = (X^T X)^{-1} X^T Y$$

119

Geladi and Kowalski, Analytica Chimica Acta, 1985

Principal Components Analysis (case X=Y)

A **variance** maximisation problem:

$$\mathbf{w} = \operatorname{argmax}_{||\mathbf{w}||=1} (X\mathbf{w})^T (X\mathbf{w})$$
$$= \operatorname{argmax}_{||\mathbf{w}||=1} \mathbf{w}^T X^T X \mathbf{w}$$
$$= \operatorname{argmax}_{||\mathbf{w}||=1} \mathbf{w}^T S_{XX} \mathbf{w}$$

$$\nabla_{w} \mathcal{L}(\mathbf{w}, \lambda) = \nabla_{w} (\mathbf{w}^{T} S_{XX} \mathbf{w} - \lambda \mathbf{w}^{T} \mathbf{w}) = 0$$
$$\mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w} = \lambda \mathbf{w}.$$

Non-linear iterative partial least squares - NIPALS Wold 1975

Random initialization **w** 2. Solve : $\operatorname{argmin}_{\mathbf{t}}||X - \mathbf{tw}^{T}||^{2}$ $\mathbf{t} = X\mathbf{w}(\mathbf{w}^T\mathbf{w})^{-1}$ 3. Normalize : $\mathbf{t} = \frac{\mathbf{t}}{||\mathbf{t}||}$ 4. Update : $\operatorname{argmin}_{\mathbf{w}} ||X - \mathbf{tw}^T||^2$ $\mathbf{w} = X^T \mathbf{t} (\mathbf{t}^T \mathbf{t})^{-1}$ 5. Iterate 2-4 until convergence

Why it works: $4 \rightarrow const \, \mathbf{w} = X^T$ $2 \rightarrow const \, \mathbf{w} = X^T X \mathbf{w}$ Then $const \, \mathbf{w} = S_{XX} \mathbf{w}$

eigen-solution of the covariance matrix $X^T X$

Canonical Correlation Analysis

A correlation maximisation problem:

$$\mathbf{w}_{x}, \mathbf{w}_{y} = \operatorname*{argmax}_{\mathbf{w}_{x}, \mathbf{w}_{y}} \rho(\mathbf{X}\mathbf{w}_{x}, \mathbf{Y}\mathbf{w}_{y})$$
$$\mathbf{w}_{x}, \mathbf{w}_{y} \qquad \qquad \mathbf{a} \qquad \mathbf{a}^{T}\mathbf{b}$$
$$\mathbf{b} \qquad \qquad \mathbf{b}$$

$$\rho(\mathbf{X}\mathbf{w}_x, \mathbf{Y}\mathbf{w}_y) = \frac{\mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_y}{\sqrt{\mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_x} \sqrt{\mathbf{w}_y^T \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_y}}$$

A correlation maximisation problem:

$$\mathcal{L}(\mathbf{w}_x, \mathbf{w}_y, \lambda_x, \lambda_y) = \mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_x - \lambda_x (\mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_x - 1) - \lambda_y (\mathbf{w}_y^T \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_y - 1)$$

$$\mathcal{L}(\mathbf{w}_x, \mathbf{w}_y, \lambda_x, \lambda_y) = \mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_x - \lambda_x (\mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_x - 1) - \lambda_y (\mathbf{w}_y^T \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_y - 1)$$

$$\begin{cases} \mathbf{S}_{\mathbf{X}\mathbf{Y}\mathbf{W}_{x}} = \lambda_{\mathbf{X}}\mathbf{S}_{\mathbf{X}\mathbf{X}}\mathbf{w}_{x}, \\ \mathbf{S}_{\mathbf{Y}\mathbf{X}}\mathbf{w}_{y} = \lambda_{\mathbf{Y}}\mathbf{S}_{\mathbf{Y}\mathbf{Y}}\mathbf{w}_{y} \end{cases}$$

$$\lambda_{\mathbf{X}\mathbf{W}_x^T} \mathbf{S}_{\mathbf{X}\mathbf{X}\mathbf{W}_x} = \mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{Y}\mathbf{W}_y} = \mathbf{w}_y^T \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{w}_x = \lambda_{\mathbf{Y}} \mathbf{w}_y^T \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_y$$

$$\mathcal{L}(\mathbf{w}_{x}, \mathbf{w}_{y}, \lambda_{x}, \lambda_{y}) = \mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_{x} - \lambda_{x} (\mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_{x} - 1) - \lambda_{y} (\mathbf{w}_{y}^{T} \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_{y} - 1) \\ \begin{cases} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_{x} &= \lambda_{\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_{x}, \\ \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{w}_{y} &= \lambda_{\mathbf{Y}} \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_{y} \end{cases} \\ \lambda_{\mathbf{X}} \mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_{x} &= \mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_{y} = \mathbf{w}_{y}^{T} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{w}_{x} = \lambda_{\mathbf{Y}} \mathbf{w}_{y}^{T} \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_{y} \\ \lambda_{\mathbf{X}} \mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{w}_{x} &= \mathbf{w}_{x}^{T} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_{y} = \mathbf{w}_{y}^{T} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{w}_{x} = \lambda_{\mathbf{Y}} \mathbf{w}_{y}^{T} \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \mathbf{w}_{y} \\ \begin{bmatrix} \mathbf{0} & \mathbf{S}_{\mathbf{X}\mathbf{Y}} \\ \mathbf{S}_{\mathbf{Y}\mathbf{X}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{x} \\ \mathbf{w}_{y} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{S}_{\mathbf{X}\mathbf{X}} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{Y}\mathbf{Y}} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{x} \\ \mathbf{w}_{y} \end{bmatrix}} \qquad \begin{bmatrix} \mathsf{CCA} \text{ is solved as a} \\ \mathsf{generalized} \\ \mathsf{eigenvalue problem} \end{bmatrix}$$

Canonical Correlation Analysis (alternative formula)

$$\begin{bmatrix} \mathbf{0} & \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2} \mathbf{S}_{\mathbf{X}\mathbf{X}} \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{-1/2} \\ \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{-1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \end{bmatrix} \qquad \mathbf{v}_y = \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{1/2T} \mathbf{w}_y$$
$$\mathbf{v}_y = \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{1/2T} \mathbf{w}_y$$
$$\frac{\mathbf{u}^T}{\mathbf{v}_x \mathbf{v}_x \mathbf{v}_y} = \frac{\mathbf{v}_x^T \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{-1/2} \mathbf{v}_y}{\sqrt{\mathbf{v}_x^T \mathbf{v}_x} \sqrt{\mathbf{v}_y^T \mathbf{v}_y}}$$

The quantity is maximized when \mathbf{v}_y parallel to \mathbf{u}

1 1000

Canonical Correlation Analysis (alternative formula)

$$\rho'(\mathbf{X}\mathbf{v}_x, \mathbf{X}\mathbf{v}_x) = \frac{\mathbf{u}^T \mathbf{u}}{\sqrt{\mathbf{v}_x^T \mathbf{v}_x}} = \frac{\mathbf{v}_x^T \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{-1} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2} \mathbf{v}_x}{\sqrt{\mathbf{v}_x^T \mathbf{v}_x}}$$

Eigen-solution for the matrix

$$\mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2}\mathbf{S}_{\mathbf{X}\mathbf{Y}}\mathbf{S}_{\mathbf{Y}\mathbf{Y}}^{-1}\mathbf{S}_{\mathbf{Y}\mathbf{X}}\mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1/2}$$

Partial Least Squares

A **co-variance** maximisation problem:

$$\mathbf{w}_x, \mathbf{w}_y = \operatorname*{argmax}_{\mathbf{w}_x, \mathbf{w}_y} cov(\mathbf{X}\mathbf{w}_x, \mathbf{Y}\mathbf{w}_y)$$

$$cov(\mathbf{X}\mathbf{w}_x, \mathbf{Y}\mathbf{w}_y) = \frac{\mathbf{w}_x^T \mathbf{S}_{\mathbf{X}\mathbf{Y}} \mathbf{w}_y}{\sqrt{\mathbf{w}_x^T \mathbf{w}_x} \sqrt{\mathbf{w}_y^T \mathbf{w}_y}}$$

Partial Least Squares

$$\begin{bmatrix} \mathbf{0} & \mathbf{S}_{\mathbf{X}\mathbf{Y}} \\ \mathbf{S}_{\mathbf{Y}\mathbf{X}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w}_x \\ \mathbf{w}_y \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{w}_x \\ \mathbf{w}_y \end{bmatrix}$$

The PLS problem is solved via singular value decomposition (SVD) of the covariance matrix $\mathbf{S}_{\mathbf{XY}}$

PLS and regularized CCA

$$\begin{bmatrix} \mathbf{0} & \mathbf{S}_{\mathbf{X}\mathbf{Y}} \\ \mathbf{S}_{\mathbf{Y}\mathbf{X}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w}_x \\ \mathbf{w}_y \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{S}_{\mathbf{X}\mathbf{X}} + \delta \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{Y}\mathbf{Y}} + \delta \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{w}_x \\ \mathbf{w}_y \end{bmatrix} \xrightarrow{\delta \longrightarrow \infty} \mathsf{PLS}$$

Non-linear iterative partial least squares - NIPALS

scikit-learn/sklearn/cross_decomposition

Random initialization \mathbf{t}_x 2. Update \mathbf{w}_{u} : $\operatorname{argmin}_{\mathbf{w}_{y}}||Y - \mathbf{t}_{x}\mathbf{w}_{y}^{T}||^{2}$ $\mathbf{w}_y = Y^t \mathbf{t}_x (\mathbf{t}_x^T \mathbf{t}_x)^{-1}$ 3. Normalize : $\mathbf{w}_y = rac{\mathbf{w}_y}{||\mathbf{w}_y||}$ 4. $\mathbf{t}_y = Y \mathbf{w}_y$ 5. Update \mathbf{w}_x : $\begin{aligned} \operatorname{argmin}_{\mathbf{w}_x} ||X - \mathbf{t}_y \mathbf{w}_x^T||^2 \\ \mathbf{w}_x = X^T \mathbf{t}_y (\mathbf{t}_y^T \mathbf{t}_y)^{-1} \end{aligned}$ 6. Normalize : $\mathbf{w}_x = \frac{\mathbf{w}_x}{||\mathbf{w}_x||}$ 7. $\mathbf{t}_x = X \mathbf{w}_x$ Iterate 2-7 until convergence

(nría_

Geladi and Kowalski, Analytica Chimica Acta, 1985

Non-linear iterative partial least squares - NIPALS

scikit-learn/sklearn/cross_decomposition

Geladi and Kowalski, Analytica Chimica Acta, 1985

Non-linear iterative partial least squares - NIPALS Deflation

$$egin{aligned} \mathbf{X}^{(i+1)} &= \mathbf{X}^{(i)} - m{t}^{(i)} rac{m{t}^{(i)T} \mathbf{X}^{(i)}}{m{t}^{(i)T} m{t}^{(i)}}, \ \mathbf{Y}^{(i+1)} &= \mathbf{Y}^{(i)} - m{u}^{(i)} rac{m{u}^{(i)T} \mathbf{Y}^{(i)}}{m{u}^{(i)T} m{u}^{(i)}} \end{aligned}$$

Iterate until

- residual component negligible epsilon
- Difference between consecutive residual components negligible

Geladi and Kowalski, Analytica Chimica Acta, 1985

Reduced Rank Regression

 $f(\mathbf{A}, \mathbf{B}) = tr\{(\mathbf{Y} - \mathbf{X}\mathbf{A}\mathbf{B})\Gamma(\mathbf{Y} - \mathbf{X}\mathbf{A}\mathbf{B})^T\}$

Reduced Rank Regression

Solution associated to the eigen-decomposition of the matrix

$$\mathbf{R} = \Gamma^{1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \underbrace{\Gamma^{1/2}}_{\text{prior knowledge}} \overset{\text{Matrix encoding}}{\underset{\text{on Y}}{\text{prior knowledge}}}$$

Reduced Rank Regression

Solution associated to the eigen-decomposition of the matrix

$$\mathbf{R} = \Gamma^{1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \Gamma^{1/2} - \mathbf{Matrix encoding}$$
prior knowledge
on Y

RRR solutions:
$$\mathbf{A} = \Gamma^{-1/2} \mathbf{U}, \qquad \mathbf{B} = \mathbf{U}^T \Gamma^{1/2} \mathbf{S}_{\mathbf{YX}} \mathbf{S}_{\mathbf{XX}}^{-1}$$

Special case:

$$\Gamma = \mathbf{S}_{\mathbf{Y}\mathbf{Y}}$$
 \longrightarrow CCA

. .

Sparsity in latent variable models

$$\underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

 $\operatorname*{argmin}_{\mathbf{w}} f(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$

Worked example: Ridge linear regression

$$\mathcal{L}(\mathbf{w}) = ||Y - X\mathbf{w}||^2 + \lambda ||\mathbf{w}||^2$$
$$\frac{d\mathcal{L}}{d\mathbf{w}} = -2Y^T X + \mathbf{w}^T X^T X + \lambda \mathbf{w}^T$$

$$\mathbf{w} = (X^T X + \lambda \boldsymbol{I} d)^{-1} X^T Y$$

Shrinkage parameter towards zero solutions

Algorithm Regularization of projections parameters \mathbf{w}_x and \mathbf{w}_y in NIPALS.

Given current estimates of \mathbf{w}_x and \mathbf{w}_y . While not converged do:

- 1. compute $\mathbf{t} = \mathbf{X}\mathbf{w}_x$,
- 2. compute $\mathbf{u} = \mathbf{Y}\mathbf{w}_y$,
- 3. compute $\overline{\mathbf{w}_x}$ by solving the Elastic-Net regression:

$$\overline{\mathbf{w}_x} = \operatorname*{arg\,min}_{\mathbf{v}} \left(\mathbf{t} - \mathbf{X}\mathbf{v}\right)^2 + \lambda_{x2} \|\mathbf{v}\|_2^2 + \lambda_{x1} \|\mathbf{v}\|_1,$$

4. compute $\overline{\mathbf{w}_y}$ by solving the Elastic-Net regression:

$$\overline{\mathbf{w}_{y}} = \operatorname*{arg\,min}_{\mathbf{v}} \left(\mathbf{u} - \mathbf{Y}\mathbf{v}\right)^{2} + \lambda_{y2} \|\mathbf{v}\|_{2}^{2} + \lambda_{y1} \|\mathbf{v}\|_{1},$$

3. Normalize
$$\overline{\mathbf{w}_x}$$
 and $\overline{\mathbf{w}_x}$,

4. Set
$$\mathbf{w}_x = \overline{\mathbf{w}_x}, \ \mathbf{w}_y = \overline{\mathbf{w}_y}.$$

S. Waaijenborg, A. H. Zwinderman, Penalized canonical correlation analysis to quantify the association between gene expression and dna markers, in: BMC proceedings, Vol. 1, BioMed Central, 2007

Group-wise penalization

$$\mathbf{a}_{1} = \{snp_{1}^{1}, snp_{2}^{1}, \dots, snp_{k}^{1}\}$$
$$\mathbf{a}_{2} = \{snp_{1}^{2}, snp_{2}^{2}, \dots, snp_{l}^{2}\}$$

$$f(\mathbf{a}) = ||\mathbf{y} - \mathbf{X}\mathbf{a}||_2^2 + \lambda \sum_{l=1}^L w_l ||\mathbf{a}_l||_2$$

Vonou et al, NeuroImage 2010; Silver et al, NeuroImage, 2012; Zhu et al, 2017; ...

Group-wise penalization

Reduced-rank regression proposed by Silver et al, 2012:

Imaging features genetic data

$$f(\mathbf{a}, \mathbf{b}) = tr\{(\mathbf{Y} - \mathbf{Xab})(\mathbf{Y} - \mathbf{Xab})^T\} + \lambda \sum_{l=1}^{L} w_l ||\mathbf{a}_l||_2$$
Mapping from genetics to latent space

Rank	KEGG pathway name	π^{path}	Size (# SNPs)	Lasso selected genes in pathway ¹	Known AD genes ² in pathway
1.	Chemokine signaling pathway	0.261	2769	PRKCB PIK3R3 PIK3CG ADCY8 ADCY2 ITK GNAI1 XCL1 GNG2 GRK5	CCR2 IL8
2.	Jak stat signaling pathway	0.234	1311	PIK3R3 PIK3CG IL2RA	
3.	Tight junction	0.227	3332	PRKCB PRKCA YES1 ACTN1 GNAI1 CTNNA2	
4.	Insulin signaling pathway	0.218	1517	PIK3R3 PIK3CG HK2 G6PC ACACA	
5.	Leukocyte transendothelial migration	0.213	2289	PRKCB PIK3R3 PRKCA PIK3CG ACTN1 ITK GNAI1 CTNNA2	
6.	Leishmania infection	0.204	620	CR1 PRKCB	CR1
7.	Calcium signaling pathway	0.202	5111	PRKCB PRKCA ADCY8 ADCY2 MYLK ATP2B2 RYR2 SLC8A1	

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Decoding: data reconstruction from the latent representation Encoding: latent representation from the data

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

$$\mathbf{z} \longrightarrow \mathbf{X}$$
Posterior $p(\mathbf{z}|\mathbf{x}) \quad p(\mathbf{x}|\mathbf{z})$ Likelihood
$$p(\mathbf{z}|\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
Difficult to compute
$$\underbrace{-p(\mathbf{z}|\mathbf{x})}_{-q(\mathbf{z}|\mathbf{x})} \underbrace{-p(\mathbf{z}|\mathbf{x})}_{-q(\mathbf{z}|\mathbf{x})} \underbrace{-p(\mathbf{z}|\mathbf{x})}_{-q(\mathbf{z}|$$

nnia

- 63

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

$D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})] = \mathbf{E}_{\mathbf{z}\sim q} \log[q(\mathbf{z}|x)] - \mathbf{E}_{\mathbf{z}\sim q} \log[p(\mathbf{z}|x)]$

C. M. Bishop, Pattern Recognition and Machine Learning, Ch.10, Ed. 2006

Latent variable models via Variational Autoencoders

Kingma & Welling, 2014; Rezende et al. 2014

 $D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})] = \mathbf{E}_{\mathbf{z}\sim q} \log[q(\mathbf{z}|x)] - \mathbf{E}_{\mathbf{z}\sim q} \log[p(\mathbf{z}|x)]$

Evidence lower bound (ELBO)

$$\mathcal{L} = \mathbf{E}_{\mathbf{z} \sim q} \log[p(\mathbf{x}|\mathbf{z})] - D_{KL}[q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$

reconstruction

regularization

C. M. Bishop, Pattern Recognition and Machine Learning, Ch.10, Ed. 2006

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} [\sum_{i} \ln p(X_i | z)] - DKL(q(z | X_c) || p(z))$$

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

Evidence Lower bound (ELBO)

$$\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL \left(q(z | X_c) \| p(z) \right)$$

Encoding for given channel

minimize

$$dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$$

minimize I $dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$

Evidence Lower bound (ELBO)

 $\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL \left(q(z | X_c) \| p(z) \right)$

Encoding for given channel Reconstruction of all channels

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

minimize I $dist(q(z | X_c), p(z | X_1, X_2, ..., X_c))$

Evidence Lower bound (ELBO)

 $\frac{1}{C} \sum_{c=1}^{C} E_{q(z|X_c)} \left[\sum_{i} \ln p(X_i | z) \right] - DKL(q(z | X_c) || p(z)) :$

Encoding for given channel Reconstruction of all channels Regularization: sparsity inducing prior

[Kingma et al, NIPS, 2015; Molchanov et al, ICML 2017]

Prediction from latent space

Antelmi, Ayache, Robert and Lorenzi, ICML 2019

Generation from latent space

An example of PLS in imaging-genetics

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Partial least squares (PLS) $\max_{p,q} Cov(X \cdot p, Y \cdot q)$

Liu et al, Front in Neuroinformatics, 2014; Silver et al, NeuroImage 2012; Szymczak et al, Genetic Epidemiology 2009; ...

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Liu et al, Front in Neuroinformatics, 2014; Silver et al, NeuroImage 2012; Szymczak et al, Genetic Epidemiology 2009; ...

Multivariate Association studies

Maximizing the joint relationship between genetic variants and brain features

Liu et al, Front in Neuroinformatics, 2014; Silver et al, NeuroImage 2012; Szymczak et al, Genetic Epidemiology 2009; ...

Inría

Study cohort

Healthy AD Ν 401 238 Age (years) 74.45 74.72 Sex (% females) 49 45 MMSE 29.1 23.2 Apoe4 (% 0/1/2) 72/26/2 31/48/21

Phenotype features

- Freesurfer brain cortical thickness maps (327,684 mesh points)
- Radial distance of hippocampi and amygdalae (27,120 mesh points) [Gutman et al, NeuroImage 2013]

Genotype features

• Individuals' minor allele counts for 1,167,126 SNPs in chromosomes 1 to 22

Standard quality control: MAF < 0.01, Genotype Call Rate <95%, Hardy-Weinberg Equilibrium < 1x10^{-6.} Imputation to HapMap III reference panel, quality controlled (MAF > 0.01 and R-squared > 0.3)

(nría_

Lorenzi, Altmann, Gutman, Wray, Arber, et al, PNAS, 115 (12), 2018

Investigating biological mechanisms through Meta-analysis

PLS statistical result

Investigating biological mechanisms through Meta-analysis

PLS statistical result

Querying gene annotation databases

McLaren et al. The Ensembl Variant Effect Predictor. Genome Biology, 2016

Investigating biological mechanisms through Meta-analysis

S. Wray

148 SNP-gene combinations

6 tested tissues

hippocampus, whole blood, Adipose subcutaneous, artery tibia, nerve tibial, treated fibroblast

14 Significantly expressed genes

TM2D1 (amyloid-beta binding protein), IL10RA (increase in hippo in mouse model), TRIB3

(neuronal cell death, modulates PSEN1 stability, interacts with APP)

	Significance (p-value)	
	training	testing
TM2D1	0.005	0.053
IL10RA	0.107	0.620
TRIB3	0.003	0.003
ZBTB7A	0.036	0.913
LYSMD4	0.000	0.206
CRYL1	0.621	0.118
FAM135B	0.000	0.559
ІР6КЗ	0.000	0.465
ITGA1	0.099	0.731
KIN	0.001	0.206
LAMC1	0.002	0.062
LINC00941	0.000	0.690
RBPMS2	0.000	0.215
RP11-181K3.4	0.002	0.053

Imaging-genetics: multimodal analysis of heterogeneous data

- Multivariate Modeling in Imaging Genetics
- Online learning for multicentric studies
- Genetic analysis through disease progression modeling

Large multicentric clinical studies

Data for ~100'000 individuals

Big Data in medicine

Single hospital: 100s – 1'000s patients

Data from many hospitals needed

Access to multiple centers data falls into General Data Protection Regulation (GDPR): Privacy, confidentiality, security, ...

Data cannot be gathered in a single centre!

Standard learning algorithms cannot be used in multicentric data

Big Data in medicine

Circumventing the problem of data access **Federated-analysis (or meta-analysis)**

Is the association significant?

- No data sharing
- Ok for standard statistical testing (p-values, effect size)
- No complex modeling possible

Federated analysis toolkit

A methodology for distributed

Allows a federated framework for several key statistical operations:

Data standardization, accounting for covariates, dimensionality reduction, ...

Standard statistical pipeline in multivariate analysis

- Data standardization
- Confounding effect correction
- Multivariate analysis

Federated moment estimation: Mean

Federated moment estimation: SD

$$L(Y \mid X, W) = \left\| Y - XW^T \right\|^2$$

$$W = (X^T X)^{-1} X^T Y$$

$$L(Y \mid X, W) = \left\| Y - XW^T \right\|^2$$

$$L(Y_{c} | X_{c}, W_{c}) = ||Y_{c} - X_{c}W_{c}^{T}||^{2}$$

Alternating direction method of multipliers

$$L_{\rho}(W_{c},\tilde{W},\alpha) = \sum_{c} L(Y_{c} \mid X_{c},W_{c}) + \left\langle \alpha_{c},W_{c} - \tilde{W} \right\rangle + \frac{\rho}{2} \left\| W_{c} - \tilde{W} \right\|_{2}^{2}$$

Alternating direction method of multipliers

$$L_{\rho}(W_{c},\tilde{W},\alpha) = \sum_{c} L(Y_{c} \mid X_{c},W_{c}) + \left\langle \alpha_{c},W_{c} - \tilde{W} \right\rangle + \frac{\rho}{2} \left\| W_{c} - \tilde{W} \right\|_{2}^{2}$$

Iteratively:

$$W_{c}^{(k+1)} = \operatorname{argmin}_{W_{c}} L_{\rho}(W_{c}, \tilde{W}^{(k)}, \alpha_{c}^{(k)}) = (X_{c}^{T}X_{c} + \frac{\rho}{2}Id)^{-1}(X_{c}^{T}Y_{c} - \frac{1}{2}\alpha_{c}^{(k)} + \frac{\rho}{2}\tilde{W}^{(k)})$$

Alternating direction method of multipliers

$$L_{\rho}(W_{c},\tilde{W},\alpha) = \sum_{c} L(Y_{c} \mid X_{c},W_{c}) + \left\langle \alpha_{c},W_{c} - \tilde{W} \right\rangle + \frac{\rho}{2} \left\| W_{c} - \tilde{W} \right\|_{2}^{2}$$

Iteratively:

$$\tilde{W}^{(k+1)} = \operatorname{argmin}_{\tilde{W}} L_{\rho}(W_{c}^{(k+1)}, \tilde{W}, \alpha_{c}^{(k)}) = \frac{1}{C} \sum \frac{\alpha_{c}^{(k)}}{\rho} + W_{c}^{(k+1)}$$

Alternating direction method of multipliers

$$L_{\rho}(W_{c},\tilde{W},\alpha) = \sum_{c} L(Y_{c} \mid X_{c},W_{c}) + \left\langle \alpha_{c},W_{c} - \tilde{W} \right\rangle + \frac{\rho}{2} \left\| W_{c} - \tilde{W} \right\|_{2}^{2}$$

Iteratively:

$$\alpha_{c}^{(k+1)} = \alpha_{c}^{(k)} + \rho(W_{c}^{(k+1)} - \tilde{W}^{(k+1)})$$

Results on synthetic tests

Covariance estimation and eigen-decomposition

Silva S., Gutman B., Romero E., Thompson P., Altmann A. and Lorenzi M. ISBI 2019, arXiv:1810.08553

Covariance estimation and eigen-decomposition

Silva S., Gutman B., Romero E., Thompson P., Altmann A. and Lorenzi M. ISBI 2019, arXiv:1810.08553

Testing

Mean and sd of dot product

Absolute feature-wise error

Federated analysis of subcortical brain regions in dementia

ADNI	PPMI	UK Biobank	Miriad
Alzheimer's	Parkinson's	Healthy	Alzheimer's
802	232	208	68

Projection on latent components

Brain subcortical components

Meta-ImaGen

future steps

Project ID: 10414	k.	
No license. All rights res	erved 🗢 4 Commits 🕴 1 Branch 🥏 0 Tags 🙆 225 KB File	s
re, you can download th	e MetalmaGen Pipeline for different platforms.	
member Docker is nece	ssary to properly execute the software ([See install depend	encies]) After downloading you just need to
scute: command to exec	tute	
aster – m	etaimagen-cli	History Q Find file Q -
README added to	all the platforms	222a5bbr G
Santiago Smith aut	lored 4 months ago	inerer d
README		
Name	Last commit	Last update
Name In Linux	Last commit README added to all the platforms	Last update 4 months ago
Name In Linux In Mac	Last commit README added to all the platforms README added to all the platforms	Last update 4 months ago 4 months ago
Name Linux Mac Windows	Last commit README added to all the platforms README added to all the platforms README added to all the platforms	Last update 4 months ago 4 months ago 4 months ago
Name Linux Mac Windows README.md	Last commit README added to all the platforms README added to all the platforms README added to all the platforms Initial commit	Last update 4 months ago 4 months ago 4 months ago 4 months ago 4 months ago

metaimagen-cli

Here, you can download the MetalmaGen Pipeline for different platforms.

- · Remember Docker is necessary to properly execute the software ([See install dependencies])
- After downloading you just need to execute: command to execute

- Software freely released
- Dedicated server purchase (expected May 2019)
- Application to large scale imaging-genetics analysis

UCA IPMC, FR Poston Lab – Stanford, USA IRCCS Santa Lucia, IT UCL, UK

• Industry application: starting collaboration with Accenture Labs

Innia

Imaging-genetics: multimodal analysis of heterogeneous data

- Multivariate Modeling in Imaging Genetics
- Online learning for multicentric studies
- Genetic analysis through disease progression modeling

Modeling the natural history of neurodegeneration

Inría

Lorenzi, Filippone, Frisoni, Alexander & Ourselin, NeuroImage, 2017

- 123

Statistical disease progression model via monotonic Gaussian Processes (GP)

- Multivariate non-parametric random effects modeling
- Monotonic GP [Riihimäki & Vehtari, PMLR, 2010; Lorenzi & Filippone, ICML, 2018]
- Time reparameterization [Jedynak et al, NeuroImage 2012; Durrleman et al, IJCV, 2013; Schiratti et al, NIPS 2015]

Highlighting dynamics and relationship between biomarkers

Lorenzi, Filippone, Frisoni, Alexander & Ourselin, NeuroImage, 2017

gpprogressionmodel.inria.fr

Try it now table_APOEposRID.csv Instructions: Data should be in csv format (comma separated)	Browse	Upload
table_APOEposRID.csv Instructions: Data should be in .csv format (comma separated)	Browse	Upload
Instructions:	,	
When GP Progression Model completes the estimation the user will receive a notification with a link for downloading the Acknowledgments	e results.	
If you found GP Progression Model useful for your work, please cite the following papers:		
Marco Lorenzi, Maurizio Filippone, Giovanni B. Frisoni, Daniel C. Alexander, Sebastien Ourselin. Probabilistic disease pr	progression modeling to	

Disease staging from cortical amyloid and hippocampal volume

Disease staging as composite biomarker

GWAS results

Chromosome

Hippocampal volume

Amyloid burden

Disease staging

GWAS results

N. Ayache

P. Robert V. Manera

ILLINOIS INSTITU

L. Antelmi

S.S. Silva

M. Milanesio

UCA-Ville de Nice Young Researcher award

S. Garbarino

J. Banus

M. Sermesant

Hôpitaux Universitaires Genève

G.B Frisoni

EURECOM

M. Filippone

Thank you

