(last update March 2024)

I indicate in green the publications in which I was last author, in red the publications as first author, and in blue the publications in which I gave a significant contribution as either second or second-last author.

 

Naming convention:

 

j = journal, c = conference, w = workshop, b = book, p/o = poster/oral presentation at clinical conference, s = submitted

 

ml = machine learning, mi = medical imaging, cl = clinical

 

 

 

Machine Learning journals (2)

[j.ml1] Yann Fraboni, Richard Vidal, Laetitia Kameni and Marco Lorenzi. A general theory for federated optimization with asynchronous and heterogeneous clients updates. Journal of Machine Learning Research, 24 (110), 1-43 [link]

[j.ml2] Etrit Haxholli and Marco Lorenzi. On Tail Decay Rate Estimation of Loss Function Distributions.  Journal of Machine Learning Research. To appear. [link]

 

Medical Imaging and Computer Vision journals (22)

[j.mi1] Riccardo Taiello, Melek Önen, Francesco Capano, Olivier Humbert and Marco Lorenzi. Privacy Preserving Image Registration. Medical Image Analysis preprint 2024.

[j.mi2] Gerard Martí-Juan, Marco Lorenzi, Gemma Piella. MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer’s disease progression modelling. NeuroImage: 119892, 2023. [link]

[j.mi3] Marie Deprez, Julien Moreira, Maxime Sermesant, Marco Lorenzi. Decoding genetic markers of multiple phenotypic layers through biologically constrained Genome-to-Phenome Bayesian Sparse Regression. Frontiers in Molecular Medicine, 2, 830956. [link]

[j.mi4] Irene Balelli, Santiago Silva, and Marco Lorenzi. A Differentially Private Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations. Journal of Machine Learning for Biomedical Imaging, 2022. [link]

[j.mi5] Sara Garbarino and Marco Lorenzi. Investigating hypotheses of neurodegeneration by learning dynamical systems of protein propagation in the brain. NeuroImage, 235, 117980, 2021. [link]

[j.mi6] Vien Ngoc Dang, Francesco Galati, Rosa Cortese, Giuseppe Di Giacomo, Viola Marconetto, Prateek Mathur, Karim Lekadir, Marco Lorenzi, Ferran Prados, Maria A Zuluaga. Vessel–CAPTCHA: an efficient learning framework for vessel annotation and segmentation. Medical Image Analysis, 75:102263, Elsevier, 2021. [link]

[j.mi7]  Adrià Casamitjana, Marco Lorenzi, Sebastiano Ferraris, Loïc Peter, Marc Modat, Allison Stevens, Bruce Fischl, Tom Vercauteren, Juan Eugenio Iglesias. Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas. Medical Image Analysis, 75:102265, 2021. [link]

[j.mi8] Jaume Banus, Marco Lorenzi, Oscar Camara, Maxime Sermesant. Biophysics–based statistical learning: Application to heart and brain interactions. Medical Image Analysis, 72:102089, Elsevier, 2021. [link]

[j.mi9] Georgios Lazaridis, Marco Lorenzi, Sebastien Ourselin, and David Garway-Heath. Improving statistical power of glaucoma clinical trials using an ensemble of cyclical generative adversarial networks. Medical Image Analysis, 68:101906, 2021. [link]

[j.mi10] Clément Abi Nader, Nicholas Ayache, Philippe Robert and Marco Lorenzi. Monotonic Gaussian Process for spatio-temporal disease progression modeling in brain imaging data. NeuroImage, 205:15, 116266, 2020. [link]

[j.mi11] Raphael Sivera, Hervé Delingette, Marco Lorenzi, Xavier Pennec, Nicholas Ayache. A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments. NeuroImage. 198:255-270, 2019. [link]

[j.mi12] Claire Cury, Stanley Durrleman, David Cash, Marco Lorenzi, Jennifer Nicholas, et al. Spatiotemporal Analysis for Detection of Pre-symptomatic Shape Changes in Neurodegenerative diseases: applied to GENFI study. NeuroImage, 188, 282-290, 2019. [link]

[j.mi13] Sebastiano Ferraris, Hannes van der Merle, Lennart Van Der Veeken, Herran Prados, Juan Eugenio Iglesias, Andrew Melbourne, Marco Lorenzi, Marc Modat, Willy Gsell, Jan Deprest, Tom Vercauteren. A magnetic resonance multi-atlas for the neonatal rabbit brain. NeuroImage, 179, 187-198, 2018. [link]

[j.mi14] Marco Lorenzi, Maurizio Filippone, Giovanni B. Frisoni, Daniel C. Alexander, Sebastien Ourselin. Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease. NeuroImage, S1053-8119(17)30706-1, 2017. [link]

[j.mi15] Alex F. Mendelson, Maria A. Zuluaga, Marco Lorenzi, Brian F. Hutton, Sebastien Ourselin. Selection bias in the reported performances of AD classification pipelines. NeuroImage: Clinical, 14, 400-416, 2017. [link]

[j.mi16] Bishesh Khanal, Marco Lorenzi, Nicholas Ayache, Xavier Pennec. A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease. NeuroImage, 134, 35-52, 2017. [link]

[j.mi17] Mehdi Hadj-Hamou, Marco Lorenzi, Nicholas Ayache, Xavier Pennec. Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields. Frontiers in Neuroscience, 10, 236, 2016. [link]

[j.mi18] David M. Cash, Chris Frost, Leonardo O. Iheme, Devrim Unay, Melek Kandemir, Jurgen Fripp, Olivier Salvado, Pierrick Bourgeat, Martin Reuter, Bruce Fischl, Marco Lorenzi, Giovanni B. Frisoni, Xavier Pennec, Ronald K. Pierson, et al. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. NeuroImage, 123: 149-164, 2015. [link]

[j.mi19] Marco Lorenzi, Nicholas Ayache and Xavier Pennec. Regional Flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease. NeuroImage, 115:224-234, 2015. [link]

[j.mi20] Marco Lorenzi and Xavier Pennec. Efficient Parallel Transport of Deformations in Time Series of Images: from Schild's to Pole Ladder. Journal of Mathematical Imaging and Vision, 50(1-2):5-17, 2014. [link]

[j.mi21] Marco Lorenzi, Nicholas Ayache, Giovanni B. Frisoni, and Xavier Pennec. LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage, 81(1):470-483, 2013. [link]

[j.mi22] Marco Lorenzi and Xavier Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for Diffeomorphic Image Registration. International Journal of Computer Vision, 105(2):111-127, 2013. [link]

 

Clinical journals (18)

[j.cl1] Clement Abi Nader, Federica Ribaldi, Giovanni B. Frisoni, Valentina Garibotto, Philippe Robert, Nicholas Ayache, and Marco Lorenzi. SimulAD: a dynamical model for personalized simulation and disease staging in Alzheimer’s disease. Neurobiology of Aging 113: 73-83, 2022. [link]

[j.cl2] Georgios Lazaridis, Giovanni Montesano, Saman Sadeghi Afgeh, Jibran Mohamed-Noriega, Sebastien Ourselin, Marco Lorenzi, and David F. Garway-Heath. Predicting visual fields from optical coherence tomography via an ensemble of deep representation learners. American journal of ophthalmology 238: 52-65, 2022. [link]

[j.cl3] Andres Diaz-Pinto, Nishant Ravikumar, Rahman Attar, Avan Suinesiaputra, Yitian Zhao, Eylem Levelt, Erica Dall’Armellina, Marco Lorenzi, Qingyu Chen, Tiarnan D. L. Keenan, Elvira Agrón, Emily Y. Chew, Zhiyong Lu, Chris P. Gale, Richard P. Gale, Sven Plein & Alejandro F. Frangi. Predicting myocardial infarction through retinal scans and minimal personal information. Nature Machine Intelligence 4, no. 1: 55-61, 2022. [link]

[j.cl4] Giorgos Lazaridis, Marco Lorenzi, Jibran Mohamed-Noriega, Soledad Aguilar-Munoa, Katsuyoshi Suzuki, Hiroki Nomoto, Sebastien Ourselin, David F. Garway-Heath. OCT signal enhancement with deep learning. Ophthalmology Glaucoma, 4(3), 295-304, 2021. [link]

[j.cl5] Clément Abi Nader, Nicholas Ayache, Giovanni Frisoni, Philippe Robert, Marco Lorenzi. Simulating the outcome of amyloid treatments in Alzheimer's Disease from multi–modal imaging and clinical data. Brain Communications, Oxford University Press, 2021. [link]

[j.cl6] Peter A. Wijeratne, Sara Garbarino, Sarah Gregory, Eileanoir B. Johnson, Rachael I. Scahill, Jane S. Paulsen, Sarah J. Tabrizi, Marco Lorenzi, and Daniel C. Alexander. Revealing the timeline of structural MRI changes in premanifest to manifest Huntington disease. Neurology Genetics 7:5, 2021. [link]

[j.cl7] Raphaël Sivera, Nicolas Capet, Valeria Manera, Roxane Fabre, Marco Lorenzi, Hervé Delingette, Xavier Pennec, Nicholas Ayache, Philippe Robert. Voxel–based assessments of treatment effects on longitudinal brain changes in the Multidomain Alzheimer Preventive Trial cohort. Neurobiology of Aging, Elsevier, 94, 50–59, 2020. [link]

[j.cl8] Sara Garbarino, Marco Lorenzi, Neil P Oxtoby, Elisabeth J Vinke, Razvan V Marinescu, Arman Eshaghi, M Arfan Ikram, Wiro J Niessen, Olga Ciccarelli, Frederik Barkhof, Jonathan M Schott, Meike W Vernooij, Daniel C Alexander. Differences in topological progression profile among neurodegenerative diseases from imaging data, Elife, 8, e49298, 2019. [link]

[j.cl9] Marzia A Scelsi, Raiyan R Khan, Marco Lorenzi, Leigh Christopher, Michael D Greicius, Jonathan M Schott, Sebastien Ourselin, Andre Altmann. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain, Volume 141, Issue 7:1, 2167–2180, 2018 [link]

[j.cl10] Marco Lorenzi, Andre Altmann, Boris Gutman, Selina Wray, Charles Arber, Derrek P. Hibar, Neda Jahanshad, Jonathan M. Schott, Daniel C. Alexander, Paul M. Thompson and Sebastien Ourselin. Susceptibility of brain atrophy to TRIB3 in Alzheimer's disease: Evidence from functional prioritization in imaging genetics. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 115 (12) 3162-3167, 2018. [link]

[j.cl11] Marco Lorenzi, Ivor J. Simpson, Alex F. Mendelson, Sjoerd B. Vos, M. Jorge Cardoso, Marc Modat, Jonathan Schott, Sebastien Ourselin. Multimodal Image Analysis in Alzheimer's Disease via Statistical Modelling of Non-local Intensity Correlations. Scientific Reports (NPG), 6, 2261, 2016. [link]

[j.cl12] Marco Lorenzi, Xavier Pennec, Giovanni B. Frisoni and Nicholas Ayache. Disentangling Normal Aging from Alzheimer's Disease in Structural MR Images. Neurobiology of Aging, 36:S42-S52, 2015. [link]

[j.cl13] Antonello Preti, Cristina Muscio, Marina Boccardi, M Marco Lorenzi, Giovanni de Girolamo, Giovanni B. Frisoni. Impact of alcohol consumption in healthy adults: A magnetic resonance imaging investigation. Psychiatry Research: Neuroimaging, 224 (2), 96-103, 2014. [link]

[j.cl14] Roberta Rossi, Michela Pievani, Marco Lorenzi, Marina Boccardi, Rossella Beneduce, Stefano Bignotti, Genoveffa Borsci, Maria Cotelli, Panteleimon Giannakopoulos, Laura R. Magni, Luciana Rillosi, Sandra Rosini, Giuseppe Rossi, and Giovanni B. Frisoni. Structural brain features of borderline personality and bipolar disorders. Psychiatry Research: Neuroimaging, 213(2):83-91, 2013. [link]

[j.cl15] Marco Lorenzi, Alberto Beltramello, Nicola Mercuri, Elisa Canu, Giada Zoccatelli, Francesca Pizzini, Franco Alessandrini, Maria Cotelli, Sandra Rosini, Daniela Costardi, Carlo Caltagirone, and Giovanni B. Frisoni. Effect of memantine on resting state default mode network activity in Alzheimer's disease. Drugs and Aging, 28(3):205-217, 2011. [link]

[j.cl16] Marco Lorenzi, Michael Donohue, Donata Paternico, Cristina Scarpazza, Susanne Ostrowitzki, Olivier Blin, Elaine Irving, and Giovanni B. Frisoni. Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment. Neurobiology of Aging, 31(8):1443-1451, 2010. [link]

[j.cl17] Anna Caroli, Marco Lorenzi, Cristina Geroldi, Flavio Nobili, Barbara Paghera, Mario Bonetti, Maria Cotelli, Giovanni B. Frisoni. Metabolic compensation and depression in Alzheimer's disease. Dementia and geriatric cognitive disorders, 29(1):37-45, 2010. [link]

[j.cl18] Giovanni B. Frisoni, Marco Lorenzi, Anna Caroli, Nina Kemppainen, Kjell Nagren, and Juha O. Rinne. In vivo mapping of amyloid toxicity in Alzheimer's disease. Neurology, 72(17): 1504-1511, 2009. [link]

 

 

Highly selective machine learning conferences (7) (acceptance rate ~25%)

[c.ml1] Yann Fraboni, Martin Van Waerbeke, Richard Vidal, Laetitia Kameni and Marco Lorenzi. Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization. 27th International Conference on Artificial Intelligence and Statistics, AISTATS, 2024. [link]

[c.ml2] Jean Ogier Du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux. FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings. In NeurIPS, Datasets and Benchmarks Track. 2022. [link]

[c.ml3] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A General Theory for Client Sampling in Federated Learning. In International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI (FL-IJCAI'22). 2022. [link]

[c.ml4] Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi. Clustered Sampling: Low–Variance and Improved Representativity for Clients Selection in Federated Learning. Proceedings of the 38th International Conference on Machine Learning, ICML, 3407-3416. PMLR, 2021. [link]

[c.ml5] Yann Fraboni, Richard Vidal, Marco Lorenzi. Free–rider Attacks on Model Aggregation in Federated Learning. AISTATS 2021 – 24th International Conference on Artificial Intelligence and Statistics, p. 1846-1854. PMLR, 2021. [link]

[c.ml6] Luigi Antelmi, Nicholas Ayache, Philippe Robert and Marco Lorenzi. Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data. Proceedings of the 36th International Conference on Machine Learning, ICML, 302-311. PMLR, 2019. [link]

[c.ml7] Marco Lorenzi, Maurizio Filippone. Constraining the Dynamics of Deep Probabilistic Models. Proceedings of the 35th International Conference on Machine Learning, ICML, 3227-3236. PMLR, 2018. [link]

 

Highly selective medical imaging conferences (16) (acceptance rate ~25%)

[c.mi1] Riccardo Taiello, Melek Önen, Olivier Humbert, and Marco Lorenzi. Privacy Preserving Image Registration. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2022. pp. 130-140. [link]

[c.mi2] Josquin Harrison, Marco Lorenzi, Benoit Legghe, Xavier Iriart, Hubert Cochet, and Maxime Sermesant. Phase-independent latent representation for cardiac shape analysis. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021. Part VI 24, pp. 537-546. [link]

[c.mi3] Irene Balelli, Santiago Silva, Marco Lorenzi. A probabilistic framework for modeling the variability across federated datasets. In International Conference on Information Processing in Medical Imaging-IPMI 2021. pp. 701-714. [link]

[c.mi4] Jaume Banus, Maxime Sermesant, Oscar Camara, and Marco Lorenzi. Joint data imputation and mechanistic modelling for simulating heart-brain interactions in incomplete datasets. In Medical Image Computing and Computer Assisted Intervention, MICCAI 2020. Part VI 23, pp. 478-486. [link]

[c.mi5] Sara Garbarino, Marco Lorenzi. Modeling and inference of spatio-temporal protein dynamics across brain networks. In Information Processing in Medical Imaging-IPMI 2019. pp. 57-69. [link]

[c.mi6] Georgios Lazaridis, Marco Lorenzi, Sebastien Ourselin, and David Garway-Heath. Enhancing OCT signal by fusion of GANs: improving statistical power of glaucoma clinical trials. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019. Part I 22, pp. 3-11. [link]

[c.mi7] Răzvan Marinescu, Marco Lorenzi, Stefano B. Blumberg, Alexandra L. Young, Pere Planell-Morell, Neil P. Oxtoby, Arman Eshaghi et al. Disease knowledge transfer across neurodegenerative diseases. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019. Part II 22, pp. 860-868. [link]

[c.mi8] Juan Eugenio Iglesias, Marco Lorenzi, Sebastiano Ferraris, Loïc Peter, Marc Modat, Allison Stevens, Bruce Fischl, and Tom Vercauteren. Model-based refinement of nonlinear registrations in 3D histology reconstruction. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018. Part II 11, pp. 147-155. [link]

[c.mi9] Razvan Marinescu, Arman Eshaghi, Marco Lorenzi, Alexandra Young, Neil Oxtoby, Sara Garbarino, et al. A vertex clustering model for disease progression: application to cortical thickness images. In Information Processing in Medical Imaging-IPMI 2017. pp. 134-145. [link]

[c.mi10] Eliza Orasanu, Pierre-Louis Bazin, Andrew Melbourne, Marco Lorenzi, Herve Lombaert, Nicola J. Robertson, Giles Kendall, Nikolaus Weiskopf, Neil Marlow, and Sebastien Ourselin. Longitudinal analysis of the preterm cortex using multi-modal spectral matching. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016. Part I 19, pp. 255-263. [link]

[c.mi11] Marco Lorenzi, Gabriel Ziegler, Daniel Alexander, Sebastien Ourselin. Efficient Gaussian process-based modelling and prediction of image time series. In Information Processing in Medical Imaging-IPMI 2015. [link]

[c.mi12] Boris Gutman, Tom Fletcher, Jorge Cardoso, Greg Fleishman, Marco Lorenzi, Paul Thompson, Sebastien Ourselin. A Riemannian framework for intrinsic comparison of closed genus-zero shapes. In Information Processing in Medical Imaging-IPMI 2015. pp. 205-218. [link]

[c.mi13] Bishesh Khanal, Marco Lorenzi, Nicholas Ayache, and Xavier Pennec. A biophysical model of shape changes due to atrophy in the brain with Alzheimer’s disease. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. Part II 17, pp. 41-48. [link]

[c.mi14] Marco Lorenzi, Bjoern H. Menze, Marc Niethammer, Nicholas Ayache, Xavier Pennec, and Alzheimer’s Disease Neuroimaging Initiative. Sparse scale-space decomposition of volume changes in deformations fields. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. Part II 16, pp. 328-335. [link]

[c.mi15] Marco Lorenzi, Nicholas Ayache, and Xavier Pennec. Schild’s ladder for the parallel transport of deformations in time series of images. Biennial international conference on information processing in medical imaging IPMI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. [link]

[c.mi16] Marco Lorenzi, Nicholas Ayache, and Xavier Pennec. Regional flux analysis of longitudinal atrophy in Alzheimer’s disease. In Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012. Part I 15, pp. 739-746. [link]

 

Machine learning workshops (2)

[w.ml1] Etrit Haxholli and Marco Lorenzi. Enhanced Distribution Modelling via Augmented Architectures For Neural ODE Flows. In NeurIPS 2023 Workshop DLDE-III. [link]

[w.ml2] Etrit Haxholli and Marco Lorenzi. Faster Training of Diffusion Models and Improved Density Estimation via Parallel Score Matching. In NeurIPS 2023 Workshop on Diffusion Models. [link]

 

Medical imaging conferences and workshops (17) (acceptance rate ~50%)

[w.mi1] Lucia Innocenti, Michela Antonelli, Francesco Cremonesi, Kenaan Sarhan, Alejandro Granados, Vicky Goh, Sébastien Ourselin, Marco Lorenzi. Benchmarking Collaborative Learning Methods Cost-Effectiveness for Prostate Segmentation. PharML workshop at AAAI 2023. [link]

[w.mi2] Federica Cruciani, Andre Altmann, Marco Lorenzi, Gloria Menegaz, and Ilaria Boscolo Galazzo. What PLS can still do for Imaging Genetics in Alzheimer's disease. In 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 1-4. IEEE, 2022. [link]

[w.mi3] Marta Nunez Garcia, Sonny Finsterbach, Bunteng Ly, Marco Lorenzi, Hubert Cochet, and Maxime Sermesant. Long-term remodelling and arrhythmogenicity after myocardial infarction using a novel image-based estimator: the Scar Maturation Score. Europace 24, no. Supplement_1 (2022): euac053-042. [link]

[w.mi4] Josquin Harrison, Marco Lorenzi, Benoit Legghe, Xavier Iriart, Hubert Cochet, and Maxime Sermesant. Prediction of thrombosis in atrial fibrillation with compact atrial shape representation. Europace 24, no. Supplement_1 (2022): euac053-562. [link]

[w.mi5] Lorenza Brusini, Federica Cruciani, Ilaria Boscolo Galazzo, Marco Pitteri, Silvia F. Storti, Massimiliano Calabrese, Marco Lorenzi, and Gloria Menegaz. Multivariate data analysis suggests the link between brain microstructure and cognitive impairment in multiple sclerosis. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 685-688. IEEE, 2021. [link]

[w.mi6] Santiago Silva, Andre Altmann, Boris Gutman, Marco Lorenzi. Fed–BioMed: A general open–source frontend framework for federated learning in healthcare. 1st MICCAI Workshop on Distributed and Collaborative Learning, Oct 2020, Lima, Peru. 201–210. [link]

[w.mi7] Marta Nuñez–Garcia, Nicolas Cedilnik, Shuman Jia, Hubert Cochet, Marco Lorenzi, and Maxime Sermessant. Estimation of imaging biomarker's progression in post–infarct patients using cross–sectional data. STACOM 2020 [link]

[w.mi8] Jaume Banus Cobo, Marco Lorenzi, Oscar Camara, Maxime Sermesant. Large Scale Cardiovascular Model Personalisation for Mechanistic Analysis of Heart and Brain Interactions. Proceedings of the 10th International Conference on Functional Imaging and Modeling of the Heart (FIMH). [link]

[w.mi9] Santiago Silva, Boris Gutman, Barbara Bardoni, Paul M Thompson, Andre Altmann, Marco Lorenzi. Multivariate Learning in Distributed Biomedical Databases: Meta-analysis of Large-scale Brain Imaging Data. IEEE International Symposium on Biomedical Imaging (ISBI), Venice, 2019. [link]

[w.mi10] Marco Lorenzi, Boris Gutman, Paul M Thompson, Daniel C Alexander, Sebastien Ourselin, Andre Altmann. Secure multivariate large-scale multi-centric analysis through on-line learning: an imaging genetics case study. 12th International Symposium on Medical Information Processing and Analysis, 1016016, International Society for Optics and Photonics (SIPAIM), 2017.  [link]

[w.mi11] Sebastiano Ferraris, Marco Lorenzi, Pankaj Daga, Marc Modat, Tom Vercauteren. Accurate small deformation exponential approximant to integrate large velocity fields: Application to image registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 17-24, 2016. [link]

[w.mi12] Marco Lorenzi, Boris A. Gutman, Derrek P. Hibar, Andre Altmann, Neda Jahanshad, Paul M. Thompson and Sebastien Ourselin. Partial Least Squares Modelling for Imaging genetics in Alzheimer's Disease: Plausibility and Generalization. IEEE International Symposium on Biomedical Imaging (ISBI), 2016. [link]

[w.mi13] Marco Lorenzi, Gabriel Ziegler, Daniel C. Alexander, and Sebastien Ourselin. Modelling Non-Stationary and Non-Separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution, 1st ICML Workshop on Machine Learning Meets Medical Imaging. 9487, Springer, LNCS, 2015. [link]

[w.mi14] Marco Lorenzi and Xavier Pennec. Parallel Transport with Pole Ladder: Application to Deformations of time Series of Images. In GSI2013 - Geometric Science of Information, Springer, LNCS, 8085, 68-75, 2013. [link]

[w.mi15] Marco Lorenzi, Giovanni B. Frisoni, Nicholas Ayache, and Xavier Pennec. Probabilistic Flux Analysis of Cerebral Longitudinal Atrophy. In MICCAI workshop on Novel Imaging Biomarkers for Alzheimer's Disease and Related Disorders (NIBAD 12), 256-265, 2012. [link]

[w.mi16] Marco Lorenzi and Xavier Pennec. Geodesics, parallel transport & one-parameter subgroups. In 3rd MICCAI workshop on Mathematical Foundations of Computational Anatomy Workshop, September 2011. [link]

[w.mi17] Marco Lorenzi, Nicholas Ayache, Giovanni B. Frisoni, and Xavier Pennec. 4D registration of serial brain MRIs images: a robust measure of changes applied to Alzheimer's disease. In MICCAI Workshop on Spatio-Temporal Image Analysis for Longitudinal and Time-Series Image Data, 2010. [link]

 

 

Books (1)

I am editor of the book Trustworthy AI in Medical Imaging, which features 22 chapters from recognized authors from the communities of medical imaging, machine learning and security. I was invited by Elsevier to curate the book after I organised the homologous MICCAI workshop in 2022. The expected publication date is April 2024.

 

Book Chapters (4)

[b1] Marco Lorenzi, Irene Balelli, Ana Aguila and Andre Altmann. Integration of Multimodal Data. In Machine Learning for Brain Disorders. Editor: O. Colliot. Springer 2023. Chapter 19. [link]

[b2] Marco Lorenzi and Andre Altmann. Imaging Genetics. In Medical Image Analysis. Editors: A. Frangi, J. Prince, and M. Sonka. Elsevier 2023. Chapter 21. [link]

[b3] Xavier Pennec, Marco Lorenzi. Beyond Riemannian geometry: The affine connection setting for transformation groups. In Riemannian Geometric Statistics in Medical Image Analysis. Editors: X. Pennec, S. Sommer and T. Fletcher. Elsevier 2020. Chapter 5. [link]

[b4] Marco Lorenzi and Xavier Pennec. Discrete Ladders for Parallel Transport in Transformation Groups with an Affine Connection Structure. In Geometric Theory of Information Signals and Communication Technology. Editor: Frank Nielsen. Springer 2014. pp. 243-271. [link]

Oral Presentations at Clinical Conferences (7)

[o.1] Marco Lorenzi, Helene Barelli. Blood levels of Omega 3 and 6 across the progression of Alzheimer’s disease. Alzheimer’s Association International Conference (AAIC), 2019.

[o.2] Guoqiao Wang, Marco Lorenzi, Yan Li, Michael C. Donohue, Eric Mcdade, Andrew J. Aschenbrenner, Tammie L.S. Benzinger, Anne M. Fagan, Suzanne E. Schindler, Jason Hassenstab, Scott Berry, John C. Morris, Chengjie Xiong, Randall Bateman. Estimating years from clinical symptom onset for sporadic Alzheimer’s disease : how far are we? Alzheimer’s Association International Conference (AAIC), 2019.

[o.3] Marco Lorenzi, Maurizio Filippone, Daniel C. Alexander, Sebastien Ourselin. Modeling and prediction of the natural history of Alzheimer’s disease from longitudinal trial data. Alzheimer’s Association International Conference (AAIC), 2017.

[o.4] Marco Lorenzi, Boris A. Gutman, Andre Altmann, Derrek P. Hibar, Neda Jahanshad, Daniel C. Alexander, Paul M. Thompson, Sebastien Ourselin. Linking Gene Pathways and Brain Atrophy in Alzheimer's Disease. Alzheimer’s Association International Conference (AAIC), 2016.

[o.5] Marco Lorenzi, Nicholas Ayache, Xavier Pennec. Regional flux analysis of longitudinal atrophy in Alzheimer’s disease. Alzheimer’s Association International Conference (AAIC), 2014.

[o.6] Marco Lorenzi, Nicholas Ayache, Xavier Pennec, Giovanni B. Frisoni. Disentangling the normal aging from the pathological Alzheimer's disease progression on cross-sectional structural MR images. International Conference on Clinical Trials on Alzheimer's Disease (CTAD), 2012.

[o.7] Marco Lorenzi, Michael Donohue, Donata Paternic, Cristina Scarpazza, Susan Ostrowitzki, Olivier Blin, Elain Irving, Giovanni B. Frisoni. Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment. International Conference on Clinical Trials on Alzheimer's Disease (CTAD), 2010.

 

Poster Presentations at Clinical Conferences (15)

[p.1] Jaume Banus, Marco Lorenzi, Oscar Camara, Maxime Sermesant. Large-scale analysis of heart-brain interactions through personalisation of a mechanistic cardiovascular model. Poster. Alzheimer’s Association International Conference (AAIC), 2020.

[p.2] Damiano Archetti, Marco Lorenzi, Neil P. Oxtoby, Daniel C. Alexander, Giovanni B. Frisoni, Alberto Redolfi. Inter-cohort staging efficacy of gaussian process progression model for Alzheimer’s disease. Alzheimer’s Association International Conference (AAIC), 2020.

[p.3] Luigi Antelmi, Nicholas Ayache, Philippe Robert, Marco Lorenzi. Multiview analysis of clinical and MRI/PET imaging and socio-demographic data in Alzheimer’s disease. Alzheimer’s Association International Conference (AAIC), 2020.

[p.4] Clement Abi Nader, Nicholas Ayache, Philippe Robert, Marco Lorenzi. Simulating the outcome of a clinical intervention from a data-driven model of Alzheimer's disease progression. Alzheimer’s Association International Conference (AAIC), 2020.

[p.5] Radia Zeghari, Philippe Robert, Valeria Manera, Marco Lorenzi, Alexandra König. Towards a multidimensional assessment of apathy in neurocognitive disorders. Alzheimer’s Association International Conference (AAIC), 2020.

[p.6] Marzia Antonella Scelsi, Marco Lorenzi, Jon M. Schott, Sebastien Ourselin, Andre Altmann. Genome-wide association study of a multimodal imaging biomarker in the ADNI cohort. Alzheimer’s Association International Conference (AAIC), 2017.

[p.7] Neil P. Oxtoby, Alexandra L. Young, Marco Lorenzi, David M. Cash, Philip S.J. Weston, Sebastien Ourselin, Nick C. Fox, Jon M. Schott, Daniel C. Alexander. Model-Based Comparison of Autosomal-Dominant and Late-Onset Alzheimer's Disease Progression in the Dian and ADNI Studies. Alzheimer’s Association International Conference (AAIC), 2016.

[p.8] Razvan Valentin Marinescu, Alexandra L. Young, Neil P. Oxtoby, Nicholas C. Firth, Marco Lorenzi, Arman Eshaghi, Viktor Wottschel, M. Jorge Cardoso, Marc Modat, Keir Yong, Silvia Primativo, Nick C. Fox, Manja Lehmann, Timothy J. Shakespeare, Sebastian J. Crutch, Daniel C. Alexander. A Data-Driven Comparison of the Progression of Brain Atrophy in Posterior Cortical Atrophy and Alzheimer's Disease. Alzheimer’s Association International Conference (AAIC), 2016.

[p.9] Marco Lorenzi, Ivor Simpson, Alexander Mendelson, Jorge M. Cardoso, Marc Modat, Sebastien Ourselin. Voxel-based statistical multimodal model of brain atrophy and hypometabolism in Alzheimer's disease. Alzheimer’s Association International Conference (AAIC), 2015.

[p.10] Marco Lorenzi, Martina Bocchetta, Nicholas Ayache, Xavier Pennec, Giovanni Frisoni. Conversion to MCI in healthy individuals with abnormal CSF Aβ42 levels is associated with specific longitudinal morphological changes of the brain. Alzheimer’s Association International Conference (AAIC), 2013.

[p.11] Marco Lorenzi, Giovanni Frisoni, Nicholas Ayache, Xavier Pennec. Spatio-temporal model of atrophy progression in healthy subjects at risk for Alzheimer's disease. Alzheimer’s Association International Conference (AAIC), 2012.

[p.12] Marco Lorenzi, Giovanni Frisoni, Nicholas Ayache, Xavier Pennec. Modeling the longitudinal atrophy in healthy subject at risk for Alzheimer's disease. Alzheimer’s Association International Conference (AAIC), 2012.

[p.13] Moira Marizzoni, Edoardo Micotti, Marco Lorenzi, Alessandra Paladini, Anna Caroli, Claudia Balducci, Sophie Dix, Michael O'Neill, Christian Czech, Ozmen Laurence, Jill Richardson, Gianluigi Forloni, Giovanni Frisoni. In vivo diffusion tensor imaging and tract-based spatial statistics in three mouse models of Alzheimer's disease. Alzheimer’s Association International Conference (AAIC), 2012.

[p.14] Marco Lorenzi, Xavier Pennec, Giovanni Frisoni. Monitoring the Brain's Longitudinal Changes in Clinical Trials for Alzheimer's Disease: A Robust and Reliable Nonrigid Registration Framework. Alzheimer’s Association International Conference (AAIC), 2011.

[p.15] Marco Lorenzi, Alberto Beltramello, Giada Zoccatelli, Francesca Benedetta Pizzini, Franco Alessandrini, Maria Cotelli, Sandra Rosini, Elisa Canu, Daniela Costardi, Giovanni Frisoni. Effect of memantine on the activity of the default mode network : A resting fMRI study. Alzheimer’s Association International Conference (AAIC), 2009.